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before it happens, since the vehicles must be programmed 
with a decision-procedure prior to actually encountering 
the situation. The dilemma occurs when an autonomous 
vehicle is heading towards another vehicle or group of 
pedestrians, and does not have enough time to stop. In this 
situation, the vehicle can either swerve quickly, putting its 
own passengers at risk of harm, or slow down as much as 
possible while continuing its dangerous course.1

Most people seem to assume that some version of Utili-
tarianism provides the correct solution for this problem. In 
a recent survey of public responses, Bonnefon et al. (2016) 
found that laypeople overwhelmingly agree that swerv-
ing is the correct decision in the situation described above 
(less so when it’s their own vehicle). Yet for those of us 
who believe that Utilitarianism is not the correct norma-
tive guide to decision-making, it is important to outline an 
alternative. One alternative would be a decision-procedure 
based on the Principle of Double-Effect: the vehicle always 
continues its deadly path towards pedestrians, on the 
grounds that this is merely foreseen (and regrettable) harm, 
while swerving to intentionally harm passengers would be 
intentional harm. This is not the alternative that I wish to 
present here. Instead, I will describe a decision-procedure 
for this problem using the principles and methods advo-
cated by Rawls (1971).

Rawls’ moral theory has been incredibly influential 
within moral philosophy since its original publication, 
but as far as I’m aware, it has never been operationalized 
for machine decision-procedures. In fact, the available 
texts on machine ethics (Wallach and Allen 2010; Lin 

1 More generally, the dilemma occurs whenever every action avail-
able to the vehicle will result in some amount of expected harm, 
whether this is from collisions with other vehicles, motorcycles, bicy-
clists, or pedestrians.

Abstract Autonomous vehicles must be programmed 
with procedures for dealing with trolley-style dilemmas 
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Introduction

Trolley dilemmas occur when a runaway object is headed 
towards some group of people, and it’s possible to divert or 
block the train with an action that will result in the deaths 
of other people. Moral philosophers and psychologists are 
used to hearing this scenario criticized for being unrealistic 
and implausible. However, the newly emerging field of 
autonomous vehicles has recently provided a real-world 
trolley dilemma, and one that urgently needs to be solved 
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2011; Anderson et  al. 2011) either don’t mention Rawls 
or group him together with other theories like Kan-
tian Ethics. In the past 15 years, there have been algo-
rithms designed based on the principles of Utilitarianism 
(Anderson et  al. 2004), Kantian Ethics (Powers 2006), 
Virtue Ethics (Wallach and Allen 2010), and Prima Facie 
Duties Approaches (Anderson and Anderson 2011). How-
ever, there have been no algorithms designed based on 
Rawls’ version of Contractarianism, despite the fact that 
the theory contains what I take to be a very clear deci-
sion-procedure over numerical values. I also think that 
it happens to be the best available moral theory, but that 
would be too much to defend here. Instead, for the pur-
poses of this paper, it will hopefully be enough to present 
the first description of a Rawlsian algorithm and demon-
strate how it can be applied to autonomous vehicles.

The basic idea of this Rawlsian algorithm will be to 
gather the vehicle’s estimation of probability of survival 
for each player in each action, then calculate which action 
each player would agree to if he or she were in an origi-
nal bargaining position of fairness. I will employ Rawls’ 
assumption that the Maximin procedure is what self-
interested agents would use from an original position. 
This procedure will produce a unique decision in almost 
every situation, except the rare cases when there is a per-
fectly symmetrical trade-off of probability of survival for 
two or more players. Under these conditions, I suggest 
that self-interested players from the original position will 
randomize their decisions.

The next section of the paper will briefly describe 
some of the concepts and assumptions used in the algo-
rithm (not to be confused with a detailed overview or 
defense of Rawls). The third section describes the details 
of the algorithm. The fourth section applies the algorithm 
to the problem of autonomous vehicles, and the fifth sec-
tion presents some brief objections and replies.

A ‘crash‑course’ in Contractarianism

Rawls’ moral theory is usually categorized into the tra-
dition of Contractarianism. The term ‘Contractarianism’ 
can refer to either a meta-ethical or a normative claim, 
and both will be adopted here. The meta-ethical claim 
is about the origin and purpose of moral rules; it states 
that moral principles are developed as solutions to the 
problem of social cooperation amongst self-interested 
organisms. The classic source for this view is Hobbes 
(1651), and has been endorsed in the twentieth century 
by Gauthier (1986), Binmore (2005), and Skyrms (2003). 
This view is described by Rawls in the opening pages of 
A Theory of Justice:

Then, although a society is a cooperative venture 
for mutual advantage, it is typically marked by a 
conflict as well as by an identity of interests. There 
is an identity of interests since social cooperation 
makes possible a better life for all than any would 
have if each were to live solely by his own efforts. 
There is a conflict of interests since persons are not 
indifferent as to how the greater benefits produced 
by their collaboration are distributed, for in order to 
pursue their ends they each prefer a larger to a lesser 
share. A set of principles is required for choosing 
among the various social arrangements which deter-
mine this division of advantages and for underwrit-
ing an agreement on the proper distributive shares. 
These principles are the principles of social justice: 
they provide a way of assigning rights and duties in 
the basic institutions of society and they define the 
appropriate distribution of the benefits and burdens 
of social cooperation (Rawls 1971, p. 4).

The problem that Rawls describes here is prevalant in 
almost every part of human society. More food per per-
son can be produced by agriculture than by hunting and 
gathering, but agriculture requires cooperation and stor-
age which can be taken advantage of by thieves. Loaning 
money can be beneficial to both parties, but the lender 
always risks someone running off with her money. Two 
villages may gain strength by forming an alliance, but 
by letting their guards down, each runs the risk of its 
ally taking over. With the cooperators constantly put-
ting themselves at such risk, one might expect that coop-
eration is a rare occurrence in animal societies. How-
ever, cooperation (both within and between species) is 
extremely common in both animal behavior and human 
societies. Thus, explaining how selfish organisms solve 
the problem of cooperation is a puzzle. Meta-ethical Con-
tractarians suggest that moral principles and judgments 
have developed in order to overcome this challenge.

The best way of formally modelling the problem of 
cooperation employs games like the Prisoner’s Dilemma 
(PD) and the Stag Hunt (SH), which both set up higher 
payoffs for cooperation than for working independently, 
but involve some risk in cooperation as well.2 I’ll call this 
category of games ‘cooperation games.’ In the PD, each 
player prefers mutual cooperation to mutual defection. 

2 The SH game comes from a story told by Jean-Jacques Rousseau 
about two hunters who could decide to either cooperate and hunt 
stag for a larger mutual payoff, or defect and decide to hunt hare for a 
lesser but still acceptable dinner (Skyrms 2003). The problem is that 
catching a stag requires two hunters, and so cooperating still makes 
the cooperator vulnerable. However, in this case (as opposed to PD), 
the other player doesn’t have as much incentive to cheat, since a rab-
bit dinner could just as well be obtained from both players defecting.
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However, each player also most prefers to successfully 
take advantage of their partner, and least prefers to be 
taken advantage of. Using the conventions of game the-
ory, this game is set up as a matrix with two players, 
where each player’s preference is represented with an 
ordinal number, and higher ordinal numbers represent 
higher preferences (0 is one’s lowest preference, 1 is pref-
erable to 0, etc.) (Table 1):

One does not need to know the mathematical details of 
game theory to see that for both players, defecting is always 
the best option. If you are P1, you don’t know what P2 is 
going to do: he might cooperate or he might defect. But you 
do know that if he cooperates, then your defecting will get 
you a payoff of 3 rather than 2. You also know that if he 
defects, then your defecting will get you a payoff of 1 rather 
than 0. The strategy of defecting in this game is called a 
strongly dominating strategy, because no matter what the 
other player does, this strategy always results in greater 
payoffs. This result is a surprise, since both players using 
their dominating strategies will produce the outcome of 
(1,1). However, there is another outcome preferred by both 
players: mutual cooperation (2,2). Thus, we find a paradox, 
where two self-interested organisms wind up producing 
an outcome that is not Pareto-optimal, meaning that there 
exists another outcome that is better for at least one player 
without making any others worse off.

The Contractarian meta-ethical proposal is that the 
function of morality is to push both players towards their 
Pareto-optimal outcomes. A system is Pareto-efficient 
(or Pareto-optimal) whenever no player’s situation can be 
improved without making another player’s situation some-
how worse off. For example, you throwing away the rest of 
your dinner while I am sitting next to you starving to death 
would be Pareto-inefficient. Giving me your food would be 
a Pareto-improvement on the current state, since it would 
make me much better off, without making you any worse 
off (you were just going to throw the food away). If we 
are graphing the preferences of the two players on x- and 
y-axes, a Pareto-improvement on point p is just the set of 
all the points northeast of p. In Fig. 1, we see that mutual 
cooperation (2,2) is a Pareto-improvement on mutual defec-
tion (1,1) because it is northeast to the orthogonal lines 
dropped at (1,1).

The normative part of Contractarianism says that the 
best solution to the problem of social cooperation will ulti-
mately be based in the (hypothetical or actual) agreement 
of players from some kind of idealized situation. Rawls’ 

idealized situation is to cover up knowledge about oneself 
in a “veil of ignorance,” which has the function of “[nullyi-
fying] the effects of specific contingencies which put men 
at odds and tempt them to exploit social and natural cir-
cumstances to their own advantage” (Rawls 1971, p. 118). 
In this ‘original positon,’ players have information about 
the outcomes of each action without knowing which player 
they happen to be. The result of this is that all players will 
agree on the same decisions from the original position, 
since they are all effectively the same player.

Because the veil of ignorance puts an agent into a state 
of ignorance about her own position in the society, it is only 
applicable to determining the distributions of goods desired 
by every person to a comparable degree. For example, 
the original position would not be helpful in determining 
a fair distribution of calculators and lava lamps, because 
some people don’t care about calculators at all. Instead, the 
original position method is limited to determining the dis-
tribution of what Rawls calls ‘primary goods,’ which are 
necessary requirements for the pursuit of any human inter-
ests. These include things like: life, opportunity, essential 
resources, and perhaps other things like health and survival. 
This is actually rather intuitive; the actions that people nor-
mally judge to be morally relevant are those that affect the 
distribution of opportunity, health, and essential resources, 
rather than those that affect the distribution of lava lamps. 
It’s because autonomous cars will be making decisions that 
influence the distribution of health and survival that makes 
their decision-procedure morally relevant.

What decision-procedure will a rational person pursue 
from the original position? Imagine two potential distribu-
tion schemes of some primary good among a group of six 
people (for simplicity, we’re assigning numerical values to 
the primary goods where higher numbers indicates more 
units of the good). Call these D1 and D2, where the two pos-
sible distributions are:

Table 1  Payoffs in PD, where 
C = cooperate and D = defect C D

C 2,2 0,3
D 3,0 1,1

1 2 3 4

1

2

3

4

D,D

C,D

D,C

C,C

P1

P2

Fig. 1  Payoffs in PD as a graph, with P1’s preferences on the x-axis, 
and P2’s preferences on the y-axis
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D1: (0, 6, 7, 10, 20, 40)
D2: (5, 6, 7, 7, 8, 9)

In the first scheme, Player 1 will receive 0 units of the pri-
mary good, and in the second scheme, Player 1 will receive 
5 units of the primary good. Of course, from the original 
position, you don’t know which player you will wind up 
being. If you’re using a sum rule, you might prefer D1, since 
it has a higher total number of units (83), which is higher 
than the sum of D2. Similarly, if you’re using an expected 
value rule, you’d still prefer D1, since your expected value 
is roughly (.167)(83) = (13.83), which is higher than the 
expected value in D2. This latter approach is advocated by 
the game theorist John Harsanyi (Harsanyi 1975). How-
ever, Rawls insists that, if you know the probability of 
being a particular person, you still aren’t completely within 
the veil of ignorance, because your decisions won’t be gen-
uinely treating everyone’s interests as potentially your own. 
Instead, he favors a ‘thick’ veil of ignorance (as opposed 
to Harsanyi’s ‘thin’ veil), where the veil even covers infor-
mation about how many people are in the society and how 
many are assigned each payoff.

Rawls claims that, within this thick version of the origi-
nal position, every self-interested player will follow the 
Maximin criterion. Maximin is a strategy of maximizing 
the minimum payoffs; it is often described as being ‘pes-
simistic’ or ‘safe,’ because it focuses on improving the 
worst-case scenario. The strategy is usually employed 
within decision theory, where a player can make the deci-
sion that maximizes her lowest payoff (given the moves 
of other players). Within the original position, we have 
an equal chance of being the worst-off player as anybody 
else, so Maximin dictates that we maximize the minimum 
payoff for the entire set of players, rather than just for a 
single player alone. This is often described as making the 
worst-off person as well-off as possible. Accordingly, the 
principles of justice that Rawls eventually derives from the 
original position are focused on improving the welfare of 
the worst off people in a society. These principles for the 
distribution of rights, opportunities, and wealth will not 
be discussed in this paper, but only how the original posi-
tion and Maximin procedure applies to decision-making in 
autonomous vehicles.

There is one part of the Maximin procedure that, to my 
knowledge, has not been worked out sufficiently by Rawls 
or anybody else, and is perhaps the only original contri-
bution that I have to make to the moral theory itself. As 
I understand it, the Maximin procedure begins with the 
worst-off person in the set of players, but there is no reason 
in the framework of the original position why it has to stop 
with that person, why it would only apply to the worst-off 
person. It seems clear that agents in the original position 
would also consider the next-lowest payoffs, since they have 

an equal chance of being the next player, and are interested 
in maximizing her minimum as well. For example, consider 
two outcomes with payoffs of (2, 3) and (2, 90). Both of 
these outcomes are equivalent in their absolute lowest pay-
off, yet the second is obviously a Pareto-improvement on 
the first. I suggest that, from the original positon, once we 
have determined that these outcomes are equivalent in their 
absolute lowest payoff, we would mask the worst-off pay-
offs and perform the Maximin procedure on the next-low-
est set of outcomes. In the present example, (2, 90) would 
clearly be the winner. Not only does this follow from the 
normative guidelines of the original position, but it now 
also satisfies the meta-ethical requirement of Contractarian-
ism: results of the iterated Maximin procedure will always 
be Pareto-optimal. In addition, a unique outcome will be 
reached by this procedure in almost every situation, so we 
now have all the theoretical machinery needed to develop a 
decision-procedure for self-driving vehicles.

To wrap up this discussion of Rawlsian Contractarian-
ism, let’s see how the theory would apply to the PD game. 
For each outcome, we can create a set of the lowest payoffs, 
and then pick the outcome with the highest number in that 
set. In PD, the outcomes are: (1,1), (2,2), (0,3), and (3,0), 
so the corresponding set of lowest payoffs is: {1, 2, 0, 0}. 
The highest of these minima is the one corresponding to 
the outcome at (2,2), so that would be the outcome chosen 
by all players from the original position.

The algorithm

A model for the Rawlsian algorithm must contain at least 
three kinds of entities:

N = Players = {P1,P2,P3,… ,Pn}

A = Actions = {A1,A2,A3,… ,Am}

u = Utility Function = u : (A × N) → {ℝ}

Players are interpreted as all the people whose probability 
of harm is changed by the actions of the machine. Actions 
are interpreted as a set of outcomes that the machine can 
take steps towards at the present time. Rejecting the distinc-
tion between actions and omissions, we will also assume 
that do nothing is always an action within the set A.

The utility function is used to assign payoffs for each 
action with respect to each player. Formally, it is a mapping 
from the Cartesian product of players and actions to the set 
of real numbers. In the algorithm presented here, this func-
tion will be based on the probability that each player will 
survive, so all the numbers will be between 0 and 1. I’ll 
assume that it is possible for an autonomous vehicle to esti-
mate the likelihood of survival for each person in each out-
come. Given that the vehicle will have information about its 
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own speed, the angle of impact, and sizes of the players, I 
think this is a plausible assumption to make. Indeed, one of 
the reasons why a Rawlsian algorithm may be successful in 
this domain is that goods in motor vehicle accidents can be 
considered along a single dimension of likelihood of sur-
vival. I’ll also assume that injuries like broken ribs, whip-
lash, etc., can be represented as points along the dimension 
of likelihood of survival (the final section of this paper will 
consider a brief objection to this assumption).

The output of the utility function will be a set of action 
profiles, which assigns a real number to every pairing of 
players and actions. These action profiles can be repre-
sented as matrices (where each matrix contains the payoffs 
for each action), or as a table (Table 2) or a graph (Fig. 2): 

Action profiles as a set of matrices:
A1: (.25, .70)
A2: (.10, .01)
A3: (.25, .10)
A4: (.30, .25)

Using the action profiles as input, a Maximin procedure 
can be run by compiling the lowest payoffs for each action 
into a set, then picking the highest payoff from that set. 
Call that payoff a. If a is unique in the set of lowest pay-
offs, then the procedure can halt and produce that action as 
its decision. For instance, in PD, the procedure would stop 
at this point, and produce mutual cooperation (2,2) as the 
result. However, if there is some other payoff in the set of 
lowest payoffs that ties for a, then it picks out more than 
one action. So the next step is to maximize the next-lowest 

payoff of those actions, assuming there are other payoffs 
besides a. This can be done by ‘masking’ (or deleting) the 
payoffs that are equal to a, {x|x = a}, and then running 
Maximin all over again on the remaining actions. We can 
continue doing this until there is a unique outcome, or we 
have run out of payoffs. At this point, self-interested play-
ers will be indifferent about the actions, and the procedure 
will randomize. This algorithm is represented in Fig. 3 as a 
flowchart:

I have designed this flowchart with typicality in mind. 
The three different columns (not including the input and 
output) are ordered from the most typical to the least typi-
cal paths. By far the most typical paths will trace a straight 
line down the first column and reach a single decision. Less 
typically, there will be ‘ties’ for the maximin value (a), and 
the path will proceed up through the second column and 
back down through the first again. In even more rare cases, 
this will continue in a circular path until a unique value 
is reached. Finally, in the rarest of circumstances (exactly 
symmetrical trade-offs in payoffs), the path will proceed to 
the third column and randomize.

Here are some examples. As described at the end of sec-
tion , the Rawlsian solution to the PD game traces a straight 
path down the first column and reaches a unique output at 
(2,2). The data from Table  2 and Fig.  2 is more compli-
cated; it proceeds up through the second column. For the 
action profiles A1-A4, the lowest payoffs are: {.25, .01, .10, 
.25}. The highest of these payoffs is .25, so well call that 
payoff a, and select every action with that payoff. In this 
case, both A1 and A4 have the same value a, so we select 
both actions, and proceed to the second column. Because 
there are still other payoffs in their action profiles, the 

Table 2  Action profiles as a 
table A1 A2 A3 A4

P1 .25 .10 .25 .30
P2 .70 .01 .10 .25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A1

A2

A3

A4

P1

P2

Fig. 2  Action profiles as a graph
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Fig. 3  The Rawlsian algorithm as a flowchart
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algorithm now masks a from both their profiles, and runs 
the Maximin procedure again. The new set of lowest pay-
offs (which is also the only set of payoffs left) becomes: 
{.70, .30}. The highest of these payoffs is .70; therefore, 
A1 is the decision output. If A1 and A4 had symmetrical 
payoffs in their outcomes, (.25, .70) and (.70, .25), then all 
the values would be masked and there would no longer be 
any payoffs left, so the procedure would move to the third 
column and randomize.

Applying the algorithm

We can now return to the original trolley-problem scenario 
for autonomous vehicles to see how the Rawlsian differs 
from the Utilitarian. I assume that a standard Utilitarian 
algorithm sums the payoffs in each action profile, and then 
selects the action with the highest total.3 In many cases, 
these two algorithms agree. Consider actions A1 and A4 
from the previous section, where the probabilities of sur-
vival are (.25, .70) and (.30, .25), respectively. Because 
these outcomes tied for the first round of Maximin, we 
masked the lowest payoff and found that A1 was the win-
ner. The Utilitarian would agree, since the sum for A1 is 
.95, and the sum for A4 is .55. However, imagine now that 
the probability of survival for P1 in A1 is lowered even 
slightly to .24, so that the outcomes become: (.24, .70) and 
(.30, .25). Now, the Rawlsian algorithm proclaims A4 to be 
the winner, since it has the highest minimum payoff. How-
ever, A1 still has the highest sum by far, so Utilitarianism 
sticks by A1. The key conceptual difference is that the 
Rawlsian is unwilling to accept a lower opportunity for the 
worst-off player, even if it results in greater opportunities 
for everyone else.

In our model, the trolley problem can be constructed by 
letting A1 be the near certain death of the pedestrians and 
the near-certain survival of the vehicles passenger (continu-
ing the present course), while allowing A2 to be its sym-
metrical opposite (swerving into an obstacle):

Classic Trolley:
A1 [continue]: (.99, .01, .01, .01, .01)
A2 [swerve]: (.01, .99, .99, .99, .99)

The Utilitarian algorithm will obviously favor A2, which 
has the highest sum of survival probabilities. On the other 
hand, the Rawlsian algorithm will see these as equivalent: 
after finding the same initial Maximin value (a = .01), the 

3 I am here ignoring the differences between Utilitarian procedures 
that sum the total and those that take an average (or weighted aver-
age). There are many sophisticated versions of the Utilitarian calcula-
tion, but I will only consider the most basic form here.

procedure will mask that value for all payoffs, and the next 
remaining value will also be identical (a = .99). After this, 
there are no longer any remaining values, so the vehicle 
will randomize. This makes sense conceptually: given that 
agents are choosing from behind the veil of ignorance, if I 
genuinely have no knowledge about whether I will be the 
passenger or the pedestrian, then I am genuinely indiffer-
ent about which action is better for me.

You might object that the Contractarian algorithm 
should not mask all the values equal to the minimum, but 
just one of them. If we did that, then Maximin would pro-
duce the Utilitarian solution (since the next-lowest val-
ues are higher for swerving than continuing). However, if 
we are using Rawls’ ‘thick’ version of the original posi-
tion, we should have no information about the number of 
people who are assigned to that outcome (and the prob-
abilities of being these people). I’m only developing an 
algorithm based on this thick version, but it’s certainly 
possible to develop a thin version of the Contractarian 
algorithm (which would still sometimes produce different 
results than the Utilitarian algorithm).

Importantly, the vehicle’s decision changes immedi-
ately once the probabilities change even slightly. In one 
alternative scenario, it is more likely for the pedestrians 
to survive the vehicle hitting them than the passengers 
surviving a swerving move:

Trolley with Higher Payoffs for Pedestrians:
A1 [continue]: (.99, .05, .05, .05, .05)
A2 [swerve]: (.01, .99, .99, .99, .99)

In this scenario, the Rawlsian algorithm will now choose 
to continue its dangerous path, since A1 has the best min-
imum payoff (a = .05). In another scenario, the vehicle’s 
passenger has a greater chance of survival in swerving 
than any of the pedestrians to by being hit:

Trolley with Higher Payoffs for Passenger:
A1 [continue]: (.99, .01, .01, .01, .01)
A2 [swerve]: (.04, .99, .99, .99, .99)

In this situation, the Rawlsian algorithm will swerve, 
since A2 has the best minimum payoff (a = .04). In all 
three of these scenarios, the Utilitarian will choose A2 
(swerve), and the Double-Effect advocate will choose A1 
(continue). However, the Rawlsian algorithm will change 
its decision depending on the minimum payoffs.

Objections and replies

In this section, I’ll briefly consider three objections and 
replies. Before doing so, I’ll say again that the purpose 
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of this paper is not to defend Rawls’ Contractarianism as 
a moral theory, but only to show how it can be developed 
as an algorithm and applied to the problem of autonomous 
vehicles. With that in mind, I won’t be considering any of 
the standard objections to Rawls, but only problems that 
one might have with the way his theory is used here.

The first objection is that we should consider more than 
just survival probabilities when evaluating car crash out-
comes. I should note, however, that I’m considering sur-
vival as part of (and a proxy for) physical health. Follow-
ing Norman Daniels, I assume that health is a primary good 
that all people are interested in maximizing for themselves 
from the original position. Basically, I’m trying to set up 
a single scale of severe injury, with death being the most 
extreme point on this scale. I’m willing to revise this, and 
perhaps consider the most extreme kind of injury to be the 
most debilitating and painful injury that one could still sur-
vive, but it seems easier to use databases of fatalities and 
injuries that are more or less likely to lead to fatality.

You might be skeptical about setting up such a one-
dimensional scale of health, with probability of survival 
being the proxy measurement. After all, survival might 
not have the same value when translated along the dimen-
sions of age or social importance. A 50% probability of a 
90-year-old person surviving might have a different value 
than a 50% probability of a 5-year-old surviving. A 50% 
probability of a person with an untreatable and terminal 
disease might have a different value than a 50% probabil-
ity of a healthy person surviving. Even within the origi-
nal position, there’s a plausible argument that, not know-
ing which person you would be, any self-interested person 
from behind the veil of ignorance would favor the sur-
vival of someone with more ‘quality-adjusted life years’ 
(QUALYs) remaining in their lifetime over one with fewer 
(I’m aware that this is skating on thin ice, from a Rawlsian 
perspective). QALYs are a common tool for determining 
the allocation of scarce medical resources (Sassi 2006). If a 
computer were able to take into account the ages and health 
information of all the potential victims and run these into a 
function of remaining QALYs, then these values could be 
used as coefficients to weight the probabilities of survival. 
For example, if the probabilities of survival for Player A 
and B are: (.5, .8), but their remaining QALYs are: (30, 5), 
then their resultant values would be: ((.5)(30), (.8)(5)) = 
(15, 4). In this scenario, even though Player B has a higher 
probability of survival, Player A would have the higher 
health value when QALYs are factored into the calculation.

There is some reason to be hesitant about the use of 
QALYs in the Maximin calculation. There are already 
many moral objections to the use of QALYs to allocate 
scarce medical resources (Nord 1999), and I suspect that 
there would be public outrage to the idea that every person 
is attached a value based on their health that could be used 

to weigh human lives. As I hinted at, this is also skating on 
thin ice from a Rawlsian perspective, because it comes dan-
gerously close to using social value as a factor in weigh-
ing lives. There are already rampant misunderstandings in 
the way that we should approach trolley problems: the MIT 
‘Moral Machine’ game sets up trolley dilemmas where an 
autonomous car must choose between killing people based 
on information about the victim’s weight, gender, employ-
ment, and criminal history. A Rawlsian (or any moral theo-
rist, for that matter) would be aggressively opposed to this, 
for obvious reasons. Although I think the use of QALYs is 
still justifyable from the original position, it might be more 
politically risky than the use of bare survival probabilities.

The second objection to the algorithm presented here is 
that it will ‘target’ safer motorists in collision dilemmas, on 
the grounds that they have a higher probability of survival. 
For instance, if a vehicle must decide between colliding 
with two vehicles, and one has a higher safety rating than 
the other, the vehicle will pick the safer one (the occupant 
has a higher probability of survival). A recent article in 
Slate Magazine expressed fears about this:

...it seems unfair to penalize motorcyclists who wear 
helmets by programming cars to strike them over 
non-helmet wearers, particularly in cases where hel-
met use is a matter of law. Furthermore, it is good 
public policy to encourage helmet use; they reduce 
fatalities by 22-42 percent, according to a National 
Highway Traffic Safety Administration report. As a 
motorcyclist myself, I may decide not to wear a hel-
met if I know that crash-optimization algorithms are 
programmed to hit me when wearing my helmet. We 
certainly wouldn’t want to create such perverse incen-
tives.

First, it’s misleading to say the algorithm is ‘pro-
grammed to hit’ anyone, just like it’s misleading to call 
this ‘targeting.’ The algorithm would be programmed to 
avoid causing the lower minimum survival value. Using 
active terms like ‘hit’ or ‘target’ suggests that this is the 
goal or intention of the program. As for the concern that 
people are going to stop wearing helmets and buying 
safer cars, we should remember that dilemma situations 
are extremely rare; it’s far more likely that a person will 
be involved in a normal collision than be involved in a 
dilemma-style collision. Any safety device also brings 
with it some small risk. Not wearing a helmet or buying 
a less safe car because you’re worried about being tar-
geted by an ethics algorithm would be like deciding not 
to wear a seat belt because they occasionally can lead to 
harm or death. Seat belts are much more likely to save 
you than kill you, although there is some small chance 
of the latter. Similarly, helmets and safe cars are much 
more likely to save you than result in you being targeted 
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by a crash optimization program, although there is some 
small chance of the latter.

The final objection is that the algorithm I’ve proposed 
will often produce counter-intuitive decisions. It should 
be noted, before I present the following scenario, that 
every algorithm based on a consistent moral principle 
will probably produce counter-intuitive decisions. With 
that being said, here is the most counter-intuitive one that 
the Rawlsian algorithm generates: imagine that a vehi-
cle could either collide with a single pedestrian, causing 
almost certain death, or swerve into a crowd of pedestri-
ans, causing many severe injuries. According to the Max-
imin principle, the car should swerve into the crowd. This 
is obviously surprising, and if we assume that the injuries 
are very severe (e.g., paralysis), you might even call this 
an insane decision. Technically, the Maximin principle 
prefers an infinite number of severe injuries to the death 
of a single person, and even non-Utilitarians might say 
this is a proof against the validity of the principle.

My first response is that this scenario is extremely 
unlikely; if a vehicle is equally unable to avoid hitting 
one pedestrian or another group of pedestrians, then the 
injuries both groups will sustain are probably going to be 
roughly equivalent. However, the abstract problem still 
remains. One shocking response is that, yes it seems 
counter-intuitive, but we’re not relying on intuitions to 
generate or evaluate moral theories, so that’s just a shame 
for our intuitions.4 Another (less shocking!) reply would 
be to try and motivate this response a little bit to make it 
more intuitive. If I genuinely believe that I have an equal 
chance of being the person that dies, or one of the pedes-
trians that gets injured, then it does seem to me that I 
would always prefer to be one of the injured pedestrians 
(and thus I would prefer the action that produces this 
minimum outcome). If there are four passengers in the 
car, you could re-create the same objection: a crash that 
paralyzes all four passengers is not preferable to a crash 
that kills a single pedestrian. I find this intuitive as well, 
but I don’t find it intuitive that it’s better to paralyze a 
single person than to give four people broken legs. Per-
haps if we remember that survival is being used as a 
proxy for health, with death being equivalent to the worst 
survivable injury, we can recover some of the intuitive-
ness of the Rawlsian prediction.

Conclusions and future work

This paper has presented a way of developing Rawls’ 
Contractarian moral theory into an algorithm for crash 

4 This is not the response that Rawls would make, since he advocates 
a reflective equilibrium between our intuitions and our moral theories.

optimization in autonomous vehicles. The proposed algo-
rithm uses survival probabilities as data and produces a 
unique Pareto-optimal outcome based on the Maximin pro-
cedure and randomization. These results are importantly 
different from those produced by other theories like Utili-
tarainism. The chief advantage of a Rawlsian algorithm is 
its respect for persons as equals, and its unwillingness to 
sacrifice the interests of one person for the interests of oth-
ers. Certainly, this can produce surprising results, but ones 
that any Rawlsian believes the foundations of morality must 
inevitably lead one towards.

I’ve been assuming that autonomous vehicles are oper-
ating more or less in isolation, but this is a simplification. 
Most major companies who are developing the technology 
(Google, Uber, Tesla) have their cars linked together and 
enable sharing of information. It’s plausible that, in colli-
sion scenarios involving a set of autonomous cars that are 
networked together, there will be a different set of options 
available to the vehicle, and both vehicles will be able to 
make decisions simultaneously. For instance, if Vehicle A 
is going to collide with either a pedestrian or Vehicle B, 
then the two cars could simultaneously decide to adjust 
their positions in a way to optimize the resulting harm. Per-
haps this would mean Vehicle B suddenly spinning to one 
side in order to avoid a head-on collision. While networked 
decision-making changes the actions and payoffs that are 
available to the vehicles, it doesn’t change the basic algo-
rithm that will be used to determine crash optimization. 
Both vehicles are still using either Maximin, the Utilitarain 
principle, or some other algorithm to determine which net-
worked decision is best.

I have focused in this paper on applying the Rawlsian 
algorithm to autonomous vehicles, but there are many 
other domains where this algorithm would be relevant. 
Any machine whose actions influence the distribution of 
primary goods (health, survival, opportunity, essential 
resources) will face situations where it is impossible to 
avoid some kind of trade-off of these goods. This includes: 
military drones, personal assistants, home health care aids, 
and search-and-rescue robots. For example, if a search-
and-rescue robot finds itself in a situation where it only has 
enough time or resources to save one group of people, it 
must make a moral decision. Assuming it’s able to compute 
survival probabilities for each person in the group, it could 
run a number of procedures to make a decision (maximize 
the minimum, maximize the average, maximize the total), 
and the Rawlsian algorithm favors Maximin. Home care 
aids might face situations where two people are injured, 
perhaps two children have fallen off the playground, and it 
must attend to one of them first. Again, Maximin could be 
employed.

There are all sorts of practical problems that might arise 
in implementing this algorithm. It may turn out to be far 



A Rawlsian algorithm for autonomous vehicles  

1 3

more difficult to estimate survival probabilities than I have 
assumed. Or it might take far too long to estimate survival 
probabilities and perform the Rawlsian calculation on them. 
The trolley-style problems discussed here require extremely 
fast decisions, and a solution that takes even a few seconds 
may be too long. However, this is an open question for 
computer science and engineering, and I am optimistic that 
these kinds of practical limitations are surmountable.

Just like Utilitarainism, Kantian Ethics, Virtue Ethics, 
and Prima Facie approaches can all be developed into algo-
rithms for autonomous machine decision-making, I’ve tried 
to show that Rawlsian Contractarianism can also be trans-
lated into such an algorithm. The algorithm will turn out 
to be most valuable if, as I suspect, Rawls moral theory is 
correct. Nonetheless, even if Rawls moral theory turns out 
to be incorrect, it is still a valuable contribution to the field 
of machine ethics to show how different moral theories can 
be operationalized to produce different results.
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